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The problem of the equilibrium of a linear elastic body in a bounded two-dimensional of three-dimensional domain containing 
a cut (a crack) is considered. The boundary conditions on the sides of the crack have the form of inequalities and describe the 
condition for their mutual impenetrability. The derivative of the energy functional along the length of the crack is found and 
Griffith's formula is established. In the two-dimensional case, the Eshelby-Cherepanov-Rice integral is constructed along a curve 
enclosing the vertex of the crack and it is shown that it is independent of the integration path. An analogue of the 
Eshelby--Cherepanov-Rice integral is constructed for the three-dimensional case. © 2000 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a linearly elastic body which, in the undeformed state, occupies a domain D C R p (p = 2, 3) 
and contains a crack. The crack is the modelled by a cut (whenp = 2) and by a surface (whenp = 3) 

Et+~={(x i )  [ x p = O ,  0 < x t < / + ~ ,  p = 3 : - h < x 2 < h  } 

where h > 0, l > 0, ~i is a small parameter and the subscript i ( and the subscriptj below) take the values 
1 and 2 when p = :! and 1, 2 and 3 whe__n p = 3 (Fig. 1__). We assume that Et+~ C D for all sufficiently 
small g and use the notation 12~ = D \ Et+a, 12 = D \ Et. 

The problem of the equilibrium of an elastic body containing a crack is formulated in the following 
way; it is required to find a vector function W = (w') such that 

-aii.i = f, in f~; f =(fl,f2)eCt(-D) (1.1) 

W = 0  on 1"; [W]n/>0 in El (1.2) 

Here, crij = ¢rij(W) are the components of the stress tensor, ]~ are the components of the external load 
[w] vector, and IV + - W-- is the discontinuity of the vector W on -t- The plus and minus 

superscripts correspond to positive and negative directions of the normal n to the line (p = 2) or to 
the surface (p = 3) ~=l+a- Summation is carried out over repeated indices. 

We shall assume that Hooke's law is satisfied 

~!J = 2 g e ? / +  3,8} d iv  W, ~'ij = ~'ij(W) = (w~i + wJ, i) 12 (1.3) 

where h ~ 0 and Ix > 0 are Lam6 parameters. 
The formulation of problem (1.1), (1.2) is not complete. Actually, we consider the problem of 

minimizing the functional (henceforth the integration domain is not shown) 

I(f2; W)= ~ ~ ~o(W)eo(W)d£2- ~ )'Wd~ (1.4) 

in the convex, closed set 

K(~={(wi)~Ht(f2)[ w i = O  o n  F, [wP]~>0 in .El} (1.5) 

In this case, the solution W of the minimization problem satisfies variational inequality (1.10) when 
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= 0 (see below). In particular, equilibrium equations (1.1) and boundary conditions (1.2) are satisfied. 
Other boundary conditions (see (2.14) whenp = 2 and (3.3) whenp = 3) will also be satisfied in the 
set ~l in addition to the last condition of (1.2). 

Together with problem (1.1), (1.2), we consider a family of perturbed problems, namely, it is required 
to find a vector function W 6 = (w i~) such that 

-oi;.; = ~  in ~s;  o 0 =o;j(W 6) (1.6) 

W ~ =0 on F; [WSln>~0 in = (1.7) ~1+8  

where crij and ei/are related by Hooke's law (1.3). 
As in the case of problem (1.1), (1.2), the formulation of problem (1.6), (1.7) is not complete. In 

reality, when speaking of problem (1.6), (1.7), we shall bear in mind the problem of minimizing the 
functional I(I~s; IV) in the set K~. They differ from the corresponding functional (1.4) and the set (1.5) 
in that the domain f~ is replaced by f~s an the s e t  ~--~l is replaced by ~=t+~. 

The solution 14A of the minimization problem satisfies the variational inequality (see inequality (1.10) 
below) and the second relation of (1.7) is part of the complete system of boundary conditions which 
are satisfied in the set ~t+~. 

The rate of change of the energy functional along the length of a crack is often involved in the formu- 
lation of fracture criteria [1]. Derivatives of the energy functional in the case of Poisson's equation and 
the line equations of the theory of elasticity (whenp = 2) with classical boundary conditions of the form 

o2~=0, •12=0 in "% (1.8) 

have been analysed (also, see [4-7]. In the case of the non-classical boundary conditions (1.2), the 
question of the derivatives of the energy functional has remained open up to the present time. The 
regularity of the solutions of elliptic boundary-value problems in non-smooth domains has been studied 
in [8-12] and other aspects of elliptic problems in domains with non-smooth boundaries have been 
considered in [11-17]. The dependence of the solutions of boundary-value problems on the shape of 
the domain has been investigated in [18]. Asymptotic expansions of the energy functional in the case 
of a perturbation of the dimensions of a crack have been constructed in [19-20]. 

The aim of this paper is to find the derivative of the energy functional along the length of a crack in 
the case of boundary conditions (1.2) in ~j which ensure that the sides of the crack do not penetrate 
one another. 

limll(~r,:W~)-I(~:W)]/8=dJ(~s)/dSl~ o (J(~r~)=l(~'5;W~)) 
8-.1) = 

(1.9) 

Here, W ~ and W are the solutions of problems (1.6), (1.7) and (1.1), (1.2) respectively. Actually, W ~ is 
the solution of the following variational inequality 
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WalKs : I aij(Wa)(~.ii(V)-Eij(Wa))d~s~ f(V-WG)d~6'qV~Ka (1.1o) 

and Wis the solution of the analogous inequality when Ks and fls are replaced by K0 and l~ respectively. 
In order to find the derivative (1.9), we carry out a one-to-one mapping of the domain Ds onto D. 

We then make use of the variational properties of the solutions, which enables us to avoid the need to 
calculate the material derivative of  14 ~. 

2. T H E  T W O - D I M E N S I O N A L  CASE 

We select an arbitrary function 0 ~ C~ (D) which is such that 0 = 1 in  a certain neighbourhood of the 
point xt = (l, 0). To simplify the formulae which follow below we  ~Will assume that 0 = 0 in the 
neighbourhood of the point (0, 0). We choose a transformation of the independent variables in the form 

)'l =.q-80(xs,x2), y2=12:  O'l,y2)eD,(.q,x~)eDa (2.1) 

The Jacobian qs = 1 - GO. t of transformation (2.1) is positive for small G. 
Suppose x = x(y, G) is the inverse transform of (2.1) and 14~(x) is the solution of problem (1.6), (1.7). 

Then, i4~(x) = Wa(y)y E D. Suppose, also, that Wis the solution of problem (1.1), (1.2). Then 

II Wa- Wllu,.a~O when 8 ~ 0  (2.2) 

We shall not present the proof of this convergence. It is analogous to the proof of  Lemma 1 in [21] 
where Poisson's equation in a domain with a cut was considered. 

Furthermore, it can be proved in the same way as described previously'J21] ~that a constant c > 0 
exists such that 

II Wa - iV 11.,.2~ ~< ca (2.3) 

Using transformation (2.1), we obtain (henceforth, i,j = 1, 2 everywhere) 

y~(x(y,a)) [ .ll.wadDa =J' Ji~,.,.,adfl, wa(x) = w~O'), f/aO')= I GO.,.,- 

The derivatives 

Ji'(y) = lira I ;  ( ) ) - f /  0') 
~ o  8 d8 la=0 

can now be found. 
In fact, assuming y and G are the independent variables in (2.1), we obtain x = x(y, G). Differentiation 

of equalities (2.1) with respect to G gives 

d x i  ' = 0 dr2.. = 0 

d8 I - 80 d8 
I I 

Hence, 

dx t dx 2 
~f(x(Y'8))a=o=fq--~a=o+f~238 ~ L=o = f ' '  O (2,4) 

It follows from this that 

f:(v)=lim(fi(x(y'8))-fiO'))'~ =limfi(x(y'8))-~(y)" aool, .I -80x, a~0 8 

(2.5) 
a(0fi ) (y) 

:, ( y )l _o = :,:., o + o.,., :, -- T ,  ' 
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Moreover, taking account of the inclusionfi e C 1 (~),  we obtain when B --4 0 

(f~'(Y)-fi°(Y)) 18-+ fi'(Y) in L ' (Q)  

Now, suppose 14 ~ = (w i~) is the solution of problem (1.6), (1.7). We introduce the notation 

wiS(x)=w~O'), WS(x)=Ws(y), x ~  8, .y~KL x=x(y,8) 

The relations 

18 %, = w,~ n (1 - 80,. ). 

w 28.,, = w2y, ( I -80 , ,  ), 

hold by virtue of transformation (2.1). 
Since the equality 

I,i,, 18 = W I . .  ~:., (--~50~.2)+ W~.,.2 

W 2~= = W~,., ( --~%) + W~,.= 

(2.6) 

(2.7) 

On the other hand, 

lima J / 8 - -  < lira { is (f~; W)}/8 
8- * ( I  8.--~0 

lim A J /8m  lin__.2{/a(~); W s ) } / 8  ( 2 . 1 2 )  
8--*0 8 - ~ 0  

On taking relations (2.8), (2.6) and (2.2) into account, it can be shown that the right-hand sides of 
inequalities (2.11) and (2.12) are identical. This means that the derivative (1.9) exists. Direct calculation 

(2.11) 

whence it follows that 

~ i  ( W6 )e0 ( W6 ) = (2g + ~,)(e~j (W ~ ) + E~2 (W ~ )) + 2;kgl, (W 8 )e22 (W ~ ) + 4ge ~2 ( w~ ) 

holds, then, by virtue of relations (2.7), it is possible to replace the integration domain 12s by 12 in the 
1 2 formula for the energy functional, namely (henceforth ws = us, ws = vs everywhere). 

I I I (u~v I ((2g + ~.)q~ 2 2 = - -  - g8 0,2 ) + "~J ~o(WS)~'ii(WS)d~s-S fWSd~s ~S q6 

+laud,. a +v~,. ((2bt + ~)82022 +taq~)+ (2bt + X)v~,. z -281.tun.,.USy=O,2 - (2.8) 

-28(p + ~.)us,. us:. ~ 0.+ 2 q8 + 2~'USy t us v= q8 + 2l'tUSy 2 VSy, q8 - 

-28(211 + ~. )VSy I uS+._, 0.,.= )d.Q - S fsWsd~ 

Formula (2.8), which gives the transformation of the energy functional, can be rewritten in the form 

/(f~8; WS) = Is( f~; Ws) (2.9) 

The inclusion Ws e K0 implies that W ~ e Ks and, conversely, 1~ ~ Ks implies that Ws e K0. This means 
that transformation (2.1) establishes a one-on-one correspondence between K~ and K0. In particular, 
what has been said means that 

min l(f28;U)= rain/8(f~;U) (2.10) 
UEK 8 UEKII 

Then, by virtue of (2.9) and (2.10), we have 

,5 / /5  = (18(~; W~) - l(f~; w))/8~< {% (f~; w)}/8 

(zxJ = J( f~8)-  J(~),  {%(f~; w)} =/s(f~; w) - / ( f~ ;  w)) 
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of the right-hand siides of inequalities (2.11) and (2.12) gives Griffith's formula 

dJ(f2r~)l diSla= o = '/21 (-(2j.t + ~" )"~l 0) .  "l 1 [Lt/l.12.2 0).1 -- 2t.tuy, 111,12 0 ,' I "l ~ l~ I 0 , l  + (21.t + ~,) x 

xu~ Oy, - 2(tJ- + X)ur, u.,.j 0~. 2 - 2(2l.t + ~. )ur, v~. 20y 2 )rift - (2.13) 

I ~ (~i), l ,:,d~ - ~ (Of2)y, udf2 

This gives the value of the derivative of the energy functional along the path of the crack in the case 
of the two-dimensional theory of elasticity with non-linear boundary conditions (2.14) (see below) on 
the crack sides. We will first analyse the boundary conditions in -=t in problem (1.1) and (1.2). According 
to results obtained previously [11], the solution Wof problem (1.1), (1.2) satisfies the following boundary 
conditions 

I u] ;~ 0, ~22 ~< 0. [a22] = 0, el2 = 0, ~22[v] = 0 in -/--" (2.14) 

Moreover, it follows from results obtained previously in [8] that the solution of problem (1.1), (1.2) 
(that is, in fact of problem (1.10) when ~ = 0) has additional smoothness compared with the variational 
problem. In fact, for any x ~ -=t, a neighbourhood V of point x exists such that W E HZ(v\=,I). 
Consequently, according to the embedding theorems, the function Wis continuous up to the crack sides 
and conditions (2.14) are satisfied almost everywhere in -=l. Note that tr22 = (2Ix + X)Vy2 + hUrl. In 
addition to conditions (2.14), it can be proved that 

[g22 % 1 = g22[v:, t ] = 0 almost everywhere in E t (2.15) 

Actually, by virtue of the continuity of the function v up to Et, the set 

M =  {y~Et l  [u(y)]>0} 

is open in -=t. According to the last equality of (2.14), at any pointy E M, we have tr22(Y ) = 0. It follows from this 
that tr22[vyl ] = 0 almost everywhere in M. In the set -=tkM we have [v] = 0. Consequently, [lJy 1 ] = 0 (see [22], 
Chapter 2. Theorem,4.1) which also proves equality (2.15). 

We will now prove that the right-hand side of equality (2.13) is independent of the choice of the 
function 0. It has already been established that the left-hand sides of inequalities (2.11) and (2.12) are 
identical. They are independent of 0, and hence the limit limA J/8 when 8 ~ 0 exists and is also 
independent of 0. 

Additional properties of smoothness close to the point xt can be established in some special cases. 
For example, suppose the solution Wor problem (1.1), (1.2) possesses the property [W] = 0 in Bxt N=--l, 
where Bxl is circle with centre at the point xt. Then, using the method employed in [12], it can be proved 
that the equilibrium equations 

--~u~(w) =./i 

are satisfied in the sense of distributions in Bxt. Consequently, W ~ H3oc(B_xt). In addition to what has 
1 3 been said above, by virtue of the inclusion f ~ H (D) ,  we obtain W ~ Hioc(l)). In this case, we shall 

have 

di(f~(I))/dl = 0 (~  = ~(/)) (2.16) 

Actually, integration by parts on the right-hand side of (2.13) gives 

dJ(Q(l))dl = J 0((ff I I.I + °'12.2 )Uy I + ((Y21.1 + (I22.2)Vy I )d~(l) + 
(2.17) 

+S 0(-/iuyl +.(2Vyj )(If~(I)+[ 0(tY2a[Uy~ ]+[Ol2Uy , l)dE/ 

According to relations (1.1), (2.14) and (2.15), the right-hand side of expression (2.17) is equal to zero, which 
also proves equality (2.16). 

Note that the smoethness of the function W ~ H2(Bxt \=-t) is sufficient for equality (2.16) to hold. In this case, 
the arguments presented above can be repeated and it can be proved that the right-hand side of expression (2.17) 
is equal to zero. 
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Griffith's formula (2.13) can be written in a form which does not contain the function 0. In order to 
do this, we select a circle Bxl(r) of radius r and a boundary F(r) such that 0 = 1 in Bxt(r). Integration by 
parts in (2.13) then gives 

dJ(~(I)) /  dl = It(r) + ~ (flUy, + f2vyl )d(B~l (r) \ 2 / )  (2.18) 

where 

9 2 9 2 
Iv(,.) = ~ ~ v I ((21a + 20(u ~. t - v.,._, ) + g (v~l - Uy 2 ))dF(r) + 

+~ v 2 ((2Ix + 2L )u:. v.,.,. + (It + L)Uyj v~., + ~tu.~. u.,. 2 )dr'(r) (2.19) 

and (aOl, aY2) is the unit outward normal to F(r). 
Now suppose f = 0 in certain neighbourhood V of the point xt. For fairly small r, we have Bxl(r ) C V. 

The right-hand side of equality (2.18) is independent ofr  and the following property is therefore proved. 
Suppose Wis the solution of problem (1.1), (1.2) a n d f  = 0 in a certain neighbourhood of the point xt. 
Then, the integral Ir(r) is independent of r for all fairly small r. Moreover, the preceding arguments 
show that the integral Ic, which differs from It(r) by the replacement of the circle F(r) by an arbitrary 
curve C enclosing the point xt, is independent o f  the curve C (Fig. 2). In this case, v = (vl, vz) is a unit 
vector normal to curve C. Part of this curve may coincide with -mr. Suppose ~ = ~=t A C Then, by virtue 
of relation (2.15), it is possible in Ic  to integrate both along the side E+ as well as along the side ~=-. 

We emphasize that the fact that the integral Ic  is independent of the curve C holds in the case when 
f = 0 in a domain with a boundary C. An integral of the form Ic  is called an Eshelby-Cherepanov-Rice 
integral. Note that the result that the integral is independent of the path has been obtained for the case 
of non-linear boundary conditions (2.14). 

The well-known assertions that an Eshelby-Cherepanov-Rice integral is independent of the integration path 
refer to the case of boundary conditions (1.8) (see [23]). In this case, the integral is usually written in the form 

((~iiv jw~. - ~ o i j E o v  j )dC( (w I ,w 2) = (u ,v ) )  (2.20) 

It is clear that, in the case of boundary conditions (1.8), there is no need to integrate along Z -+~ , since the 
corresponding integrals are equal to zero. There is also no need to use equality (2.15). We will show by direct 
verification that the integrands in lc and (2.20) are identical, so that the integral Ic has a classical form. 

If the crack opening close to xt in problem (1.1), (1.2) is non-zero, the boundary conditions close to 
xl have the form (r22 = ~r12 = 0, and we arrive at the classical case. We note here that the sufficient 
conditions which ensure that the crack sides do not come into contact have been given in [24]. 

Other invariant integrals along contours encompassing the crack tip also exist for the case of boundary 
conditions (1.8) [25]. 

/ 
O 

C 

l0 

F.- I x I 

Fig. 2 
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3. T H E  T H R E E - D I M E N S I O N A L  C A S E  

We now consider the function 0 ~ C~(D), 0 = 1 in the neighbourhood of  the set 

L = {( .h,Xe,X3)lxl  = l, - h < x  2 <h, x 3 =0} 

We assume that  0 = 0 in the neighbourhood of the set L0 = L It = 0. The t ransformation of  the 
independent  variables 

yl = xl - 80(.rl, x2, x3), y2 = x2, Y3 = x3 (3.1) 

in the case of small 8 constitutes a one-to-one mapping of  the domain 1~ s onto 1~ (Xl, xz, x3) Os 
(Yl, Y2, Y3) ~ l'~. 

It is then possible to argue in the same manner  as in Section 2 which gives Griffith's formula for the 
derivative of the energy functional (w 1 = u, w 2 = ~, w 3 = w) everywhere henceforth)  

 a(  >/asia=0 = '/_.I ( (2 .  + x>{-,,.'- o,, + 4 :  o,, + u,. 2 0.~.~ - 

- w,, o , ,  i + . l , , e :  o , , -  0,, + 

+ w.~ 2 0y~ -- 2Uy t Uy 3 0y.~ - 2u:. w: t 0:. 3 - 203. ~ v,..~0yx - 2Uy, Wy,. 0:.x - 2v.,..~ w.,. 0.,. - 

- 2 w.q wy 2 0~.,_ - 2try a try 20y,_ - -  2 v.~.~ u.~. 0y 2 + 2 u y.~ ws= 0y~ } + 2X{ Uy~ Wy~ 0x~ - u v ~ %. Oy~ - 

- v y, w:. 0,.~ -v.,. w:..~ 0.,._, - u,. I v:. 0.,._, })df~ - ~ (Oft),. udf~ - 

- I  (0f2) , . ,udf~- I  (0f3):, wdf} (3.2) 

It can be shown 'that the right-hand side of  equality (3.2) is independent  of 0. 
It has been shown [11] that  the solution W of problem (2.1), (2.2) satisfies the following boundary 

conditions 

lwl>~0, [033]=0,  o33~<0, o33[w]=0,  o s 3 = 0 ,  0 2 3 = 0  na =t (3.3) 

Moreover,  it is shown that  

0331w.jl = 0 almost everywhere in ,E t (3.4) 

We will now write formula (3.2) in a form which does not  contain the function 0. For this purpose, 
we consider a ne ighbourhood SL of a set L with a smooth boundary  FL assuming that  0 = 1 in SL. The  
unit outward normal  to (~1, ~ ,  ~3) is denoted by FL. Integrating by parts in (3.2), we obtain 

dJ(~}8)l = I (.fi,,,, + f2 + f3w:., )dSL + ~ I  v,((21.t + L)(u.~, - o.,~, -,v.,2. )+ 

9 ~ 2 2 
+l.t(v.~.t + w.;:l - U.r2 - u~.~ - Uy~ - Wy 2 - 2or ~ Wy 2 ) - 2X.Vy_, w~..~ )dF L + 

+~ V2((21.t + ~,)Uy,U.,.., + I.t(u.,., (U.,.,_ +V.,., )+  Wy, (0.,. 3 + W.,.., ) )+  (3.5) 

+TV(u,. (tq., + w,.. )}dFt.+ ~ v3((2bt + X.)Wy, Wys + 

+la(u.,., Cu,.. + w.,. )+ v~., (v.,... + w.,,_ ))+ ~.w.,., (%, + u.,.., ))dr" L 

Denoting the functional defined by the right-hand side of Griffith's formula by k(l, h, f ) ,  we obtain 

./¢la) =.l(t2) + k(/, h,.t)8 + 0(8) 

Note that  k(l, h, f )  is independent  of  the choice of the neighbourhood S L. 
The method proposed for obtaining the derivative of  the energy functional also enables us to treat  

more complex perturbations of the front of the crack in the three-dimensional  case. Suppose, for 
example, that the front of the crack in the unperturbed state is defined by the equation xl = g(x2), where 
g is a specified function which satisfies the Lipshitz condition such that 

g ( - h )  = g (h )  = I 
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The perturbed front of the crack is described by the equation x 1 = g(x2) + 8. We assume that the 
transformation of the independent variables is identical to (3.1), where 0 e C~ (D) and 0 = 1 in 
the neighbourhood of the set 

{ (x l ,  x2, x3 ) I .rl = g(x2 ), - h < x z < h, x 3 = 0}. 

In this case Griffith's formula also has the form (3.2) with a domain f~ corresponding to the frontxl = 
g(x2). 

Similarly, suppose the front of the crack is defined by the equation Xl -- l and the perturbed front 
has the form xl = l + Bg(x2). The known function g is assumed to be fairly smooth and such that 

g( -h )  = g( h) = 0 

We continue the function g outside of the interval ( - h ,  h) by zero and choose the function 0 as in (3.1). 
Here, the transformation of the independent variables can be chosen in a form which differs from (3.1) 
by the introduction of the factor g(x2) in front of the function 0(xl, x2, x3), and Griffith's formula has 
the form (3.2), in where the function 0 is replaced by gO. 

This research was supported by the Russian Foundation for basic Research (97-01-00896). 
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